Ranking Authors with Learning-to-rank Topic Modeling
نویسندگان
چکیده
Topic modeling has emerged as a popular learning technique not only in mining text representations, but also in modeling authors’ interests and influence, as well as predicting linkage among documents or authors. However, few existing topic models distinguish and make use of the prior knowledge in regard to the different importance of documents (authors) over topics. In this paper, we focus on the ability of topic models in modeling author interests and influence. We introduce a pair-wise based learningto-rank algorithm into the topic modeling process with the hypothesis that investigating and exploring the prior-knowledge on authors’ different importance over topics can help to achieve more accurate and cohesive topic modeling results. Moreover, the framework integrating learning-to-rank mechanism with topic modeling can help to facilitate ranking in new authors. In this paper, we particularly apply this integrated model into two applications: the task of predicting future award winners of research communities, and predicting future PC members of scientific conferences. Experiments based on two real world data sets demonstrate that our proposed model can achieve competitive ranking performance with several state-of-the-art learning-to-rank or topic modeling algorithms.
منابع مشابه
Effective Learning to Rank Persian Web Content
Persian language is one of the most widely used languages in the Web environment. Hence, the Persian Web includes invaluable information that is required to be retrieved effectively. Similar to other languages, ranking algorithms for the Persian Web content, deal with different challenges, such as applicability issues in real-world situations as well as the lack of user modeling. CF-Rank, as a ...
متن کاملInvestigating the Impact of Authors’ Rank in Bibliographic Networks on Expertise Retrieval
Background and Aim: this research investigates the impact of authors’ rank in Bibliographic networks on document-centered model of Expertise Retrieval. Its purpose is to find out what kind of authors’ ranking in bibliographic networks can improve the performance of document-centered model. Methodology: Current research is an experimental one. To operationalize research goals, a new test colle...
متن کاملارائه الگوریتمی مبتنی بر یادگیری جمعی به منظور یادگیری رتبهبندی در بازیابی اطلاعات
Learning to rank refers to machine learning techniques for training a model in a ranking task. Learning to rank has been shown to be useful in many applications of information retrieval, natural language processing, and data mining. Learning to rank can be described by two systems: a learning system and a ranking system. The learning system takes training data as input and constructs a ranking ...
متن کاملA Topic Modeling Approach to Rank Aggregation
We propose a new model for rank aggregation from pairwise comparisons that captures both ranking heterogeneity across users and ranking inconsistency for each user. We establish a formal statistical equivalence between the new model and topic models. We leverage recent advances in the topic modeling literature to develop an algorithm that can learn shared latent rankings with provable statistic...
متن کاملiRANK: A rank-learn-combine framework for unsupervised ensemble ranking
The authors address the problem of unsupervised ensemble ranking. Traditional approaches either combinemultiple ranking criteria into a unified representation to obtain an overall ranking score or to utilize certain rank fusion or aggregation techniques to combine the ranking results. Beyond the aforementioned “combine-thenrank” and “rank-then-combine” approaches, the authors propose a novel “r...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015